Muon Identification at the Tevatron

Jeff Temple
University of Arizona
for the DØ and CDF Collaborations

Why Muons?

- Wide range of physics uses
 - Low-p_T: b physics
 - · J/Ψ
 - · b-jet, flavor tagging
 - High-p_T:
 - · Electroweak W & Z
 - Top dilepton, muon + jets
 - · new Higgs, beyond SM
- "Simple" detection
 - Long lifetime
 - Minimal energy deposition
 - Little bremsstrahlung

Part 1: Detecting Muons

- · Central tracker
 - Silicon
 - Fiber Tracker/ Drift
 Chamber
- Muon detectors
 - Scintillation Counters
 - Drift Chambers
- Magnets
- · Shielding

CDF Central Tracker

· SVX II:

- 5 layers of double-sided silicon
- -2.4 cm < r < 10.7 cm

· ISL:

- 3 layers of double-sided silicon
- 20 cm < r < 28 cm

· COT:

- Open-cell drift chamber
- 96 position measurements
- -40 cm < r < 137 cm
- 1.4 T solenoid

CDF Muon System

- Central Muons (CMUP/CMX):
 - $|\eta|$ <0.6 for CMUP
 - $0.6 < |\eta| < 1.0$ for CMX
 - Up to 8 planes of drift chambers
 - 1-2 layers of scintillators
- Forward muons (IMU):
 - 1.0 < |η|<1.5
 - 2 layers of scintillators
 - 4 planes of drift chambers
 - High backgrounds prevent triggering in this region
 - Counters in 1.5 $< |\eta| < 2.0$ not currently used for reconstruction

DØ Central Tracker

SMT:

- 6 barrels, 16 disks
- 4 readout layers/barrel
- Combination of single-, double-sided silicon
- |η|<3

· CFT:

- 8 layer fiber tracker
- 2 doublets/layer
- 20 cm < r < 52 cm
- $|\eta| < 1.6$
- · 2 T solenoid

DØ Muon System

- Central (|η|<1):
 - ≥2 layers of scintillators
 - 3 layer of drift tubes
 - 3-4 planes per layer of tubes
- Forward (1<|η|<2):
 - 3 layers of scintillators
 - 3 layers of drift chambers
- Toroid outside first layer of detectors

DØ Shielding

- Backgrounds from accelerator, small angle collisions
- Place shielding around beam pipe
 - 50 cm of steel absorb hadrons and e/gamma
 - 12 cm of polyethylene absorb neutrons
 - 5 cm of lead absorb gamma rays

Reduces occupancy in muon counters by factor of ~100

Part 2: Triggering on Muons

- · Three levels of muon triggering
- Each level adds additional event information

 Form single-muon, di-muon, muon+X triggers

CDF Muon Trigger

· Level 1:

- COT track reconstruction via lookup tables
- p_T cut on track (variable thresholds)
- Match tracks to hits in muon system
- Muon stub within 2.5° of track

· Level 2:

- Tighter matching between track and stub
- Additional p_T cut

· Level 3:

- Full reconstruction
- Match reconstructed track to muon hits

CDF Muon Trigger Rates

- · CMUP
 - Level 1:
 - COT p_T > 4 GeV/c
 - · Muon hits > 6 GeV/c
 - Level 2:
 - · COT p_T > 8 GeV/c

At L = 100E30 cm⁻²s⁻¹, L1/L2 rates are: 132/12 Hz

- · CMX
 - Level 1:
 - COT $p_T > 8 \text{ GeV/c}$
 - Muon hits > 6 GeV/c
 - Level 2:
 - COT p_T > 10 GeV/c

At L = 100E30 cm⁻²s⁻¹, L1/L2 rates are: 12/9 Hz

DØ Muon Trigger

· Level 1:

- Trigger on CFT tracks matched to muon hits
- Triggers formed for 4 p_T thresholds
- Can also form triggers independently of CFT
 - Single layer of scintillators and/or wires
 - · Combination of layers inside and outside the toroid

· Level 2:

Uses wire times for more precise position information

· Level 3:

- Match reconstructed central track to muon hits $(\chi^2 \text{ fit})$

DØ L1 Muon Trigger Efficiency

- Trigger requires 2 layers of scintillators and drift tubes
- Efficiency relative to muons with p_T>4 GeV/c
- Efficiency ~ 92%

DØ L1 Trigger Rate vs. Luminosity

Require scintillator and wire hits inside and outside toroid

No track requirement

Level 1 ($|\eta|<1.6$) Trigger

Adding detector components to the trigger lowers the trigger rate by factor of nearly 100!

Part 3: Reconstructing Muons

- Project central track to muon system
- Look for match to muon hits
- Reconstruct muon from track with lowest χ^2
 - DØ also makes muon system-only χ^2
- Can also match to MIP signature in calorimeter

CDF Muon Reconstruction

- Categorize by region:
 - CMUP, CMX, IMU
- Muons with $p_{T}>20$ GeV/c are "loose" or "tight"
 - Loose:
 - Track quality, isolation cuts
 - Small energy deposition in calorimeter
 - Tight:
 - Track projects to fiducial area of muon detectors
 - Cut on distance between muon stub and projected track position

DØ Muon Types

- Local muon: Formed from muon detectors only
 - "nseg" variable based on muon layers hit
 - |nseg| = 1: hits inside toroid (A layer)
 - |nseg| = 2: hits outside toroid (B/C layer)
 - |nseg| = 3: hits in A and B/C layers
 - nseg < 0: no central track match to local muon

DØ Muon Quality

Tight Muons:

- |nseg| = 3 (Scintillator and wire hits inside and outside the toroid)
- Converged local fit

· Medium Muons:

- Same as tight, but with fewer wire hits required
- No local fit required

· Loose Muons:

- Scintillator hit + wire hits in the same layer

Rejecting Cosmics

- CDF identifies cosmics with central drift chamber
 - For each muon candidate, try to reconstruct its second leg
 - If found, test χ^2 for 1 or 2 particles

DØ uses:

- acolinearity of central tracks
- Timing and timing difference between scintillators
- DCA of muons

Rejecting Other Backgrounds

- In-flight decays (π/κ)
 - "Kinks" in central track
 - Apply DCA, χ^2 cuts
- Punch-through
 - Use increased quality criteria

central track > 20 GeV/c

Local p_{T} of medium muons 21 after DCA, χ^2 cuts

CDF Muon ID Efficiency

- Use Z->μμ events
 - Pass single muon trigger
 - Triggered muon tagged as "control" muon
 - 81 GeV/c² < $M_{\mu\mu}$ < 101 GeV/c²
 - Test muon must pass:
 - Minimum COT hits
 - DCA between track, beam
 - Energy deposition in calorimeter
 - Isolation
 - χ^2 cut

CDF ID Efficiencies

· CMUP/CMX Efficiency: 87%/93%

DØ Muon ID Efficiency

- Use Z->μμ events
- Require 2 high-P_T CFT tracks
 - Control muon:
 - · P_T > 30 GeV
 - Matched to muon hits that fired muon trigger
 - Matched to Medium muon
 - A-layer scintillator hit time < 10 ns
 - Test muon:
 - · ≥ 8 CFT hits
 - χ²<4
 - Efficiency = probability to match test muon to muon ID object

DØ ID Efficiencies

Medium, nseg=3: 82.1±0.2%

Tight: 78.2±0.2%

CDF Physics Results

Z->μμ invariant mass

 $W->\mu\nu$ tranverse mass

CDF Physics Results

B⁰ decay

New Physics Search

DØ Physics Results

Z->μμ invariant mass

 $W->\mu\nu$ tranverse mass

DØ Physics Results

Over half of DO Run II publications have used reconstructed muons!

Lessons Learned

- Shielding is important!
- Difficulties in reconstructing across different regions

-Multiple detectors allow for tailor-made triggers -Multiple reconstruction definitions provide flexibility for physics analyses

Backup Slides

DØ Muon Quality

Tight

- |nseg| = 3
- ≥ 1 A-layer scintillator
- ≥ 2 A-layer wire hits
- ≥ 1 B/C scintillator
- $\ge 3 \, \text{B/C}$ wire hits
- Converged local fit $(\chi^2>0)$

· Medium

- |nseg| = 3, fewerwire hits than Tight
- nseg = +1, +2, at least
 1 scintillator & 2 wire
 hits, bottom octants
 of detector
- Loose
 - ≥ 1 scintillator hit
 - ≥ 2 wire hits in same layer

Sample CDF Trigger: Top Physics

- · Level 1 requirement:
 - P_{T} > 4 GeV track matched to CMUP hit
 - P_T > 8 GeV track matched to CMX hit
- · Level 2:
 - P_{T} > 8 GeV track
- · Level 3:
 - P_T > 18 GeV track matched to muon hit
- Efficiency: (88.7±0.7)% for CMUP (95.4±0.4)% for CMX

mu1pt2wttx

· 3 GeV/c central track, 2 layers of scint + wire

mu1pt4wtxx

· 10 GeV/c central track, 2 layers of scint

DØ Scintillator Counters

DO Wire Chambers

Effect of Shielding

Without Shielding

With Shielding

Run I "Typical" Event

Single Muon Run II Event

